
- 1 -

A PARSER THAT CONVERTS A BOUNDARY REPRESENTATION INTO
A FEATURES REPRESENTATION

Thomas R. Kramer
Guest Researcher, National Institute of Standards and Technology &

Research Associate, Catholic University

October 3, 1988

Funding for the research reported in this paper was provided to Catholic University under Grant
No. 70NANB7H0716 from the National Institute of Standards and Technology.

Certain commercial equipment and software are identified in this paper in order to adequately
specify the experimental facility. Such identification does not imply recommendation or
endorsement by the National Institute of Standards and Technology, nor does it imply that the
equipment or software identified are necessarily the best available for the purpose.

A Parser: Boundary to Features

- 2 -

ABSTRACT

The VWS2 B-rep Parser is a computer program written in LISP that takes a file giving the
boundary representation of a part as input and produces a file giving a feature-based representation
of the part as output. The format of the input file is a PDES/STEP boundary representation, and
the format of the output file is that required by the VWS2 system of the NIST AMRF. The parser
deals with a limited range of two-and-a-half dimensional parts. The general approach to parsing
is to expect that the part is parsable and look for arrangements of faces which are the signatures of
features. The initial implementation of the approach recognizes five feature types. The approach
is extendible to a wider range of feature and subfeature types, and to parts which have features
made from several sides. Parts having features which intersect in a complex manner are likely to
test the limits of this approach, or be beyond the limits. With the addition of this parser, the AMRF
Vertical Workstation is capable of making a part from a PDES/STEP file without human
intervention.

A Parser: Boundary to Features

- 3 -

INTRODUCTION

One of the objectives of research at the National Institute of Standards and Technology (NIST)
Automated Manufacturing Research Facility (AMRF) is “to study questions of standardization,
measurement, and quality control in the automated factory environment” [NANZ]. NIST was
formerly the National Bureau of Standards.

PDES (Product Data Exchange Specification) is a national project developing standards for
exchange of complete product model data. The PDES standard is being developed in conjunction
with the International Organization for Standards, whose product data standard is the Standard for
the Exchange of Product Data (STEP). Recently, the AMRF has begun to serve as a testbed for
PDES. The opportunity to do the research reported in this paper arose from CALS support for the
NIST PDES testbed.

The AMRF Vertical Workstation has been able to produce a range of two-and-a-half dimensional
parts automatically from a feature-based design for some time [K&J1]. Roughly speaking, the
range of parts is prismatic parts with fillets and chamfers. The data preparation software for the
Vertical Workstation is called the VWS2 system. It is written in the computer language LISP. In
the VWS2 design protocol [K&J2], a part is represented by beginning with a block-shaped solid
and adding features to it. There are nine feature types in the protocol. For clarity, they will be
given in italic type in this paper. The nine feature types are:side_contour, contour_pocket,
contour_groove, pocket, hole, groove, straight_groove, text, andchamfer_out. Each feature may
be thought of as a removed volume. In addition, there are four subfeatures that may be added on
some features:chamfer_out, chamfer_in, countersink, andthread. For groove features there is
choice of bottom type between flat and round. Text may be round-bottomed or vee-bottomed.
Holes may be flat-bottomed or conical-bottomed.

What the Vertical Workstation has heretofore been lacking, is a tie-in to design information
prepared in other formats. The parser provides that tie-in. It will be called the “VWS2 B-rep
Parser” in this paper. Version 1 of the VWS2 B-rep Parser is described here. It is planned that
other, more capable, versions will be written.

Many of the design data formats used by existing commercial CAD systems, as well as the AMRF
format [HOPP], and one of the PDES formats [ISO1] [ISO2] are boundary representations. As its
name implies, a boundary representation describes the outer surface, the boundary, of the part
[REQU]. The problem of converting one boundary representation to another is tractable, though
not trivial. Other researchers at the AMRF have built systems that convert a Computervision
boundary representation into an AMRF boundary representation [FOWL], or an AMRF boundary
representation into a PDES/STEP boundary representation [LE&R].

Another important type of part representation is the constructive solid geometry (CSG)
representation. In CSG, parts are described in terms of geometric primitive solids which may be
combined by union, subtraction, and intersection. The VWS2 design protocol is a CSG
representation in which the only operation is subtraction, and the primitives may be complex in
shape.
The problem of converting a boundary representation into a CSG representation, or into some other
type of features representation, is generally regarded as difficult. Some progress has been reported

A Parser: Boundary to Features

- 4 -

by researchers [HEND], but the problem is still largely unsolved. A good survey of techniques
used by Grayer in 1976, Kyprianou in 1980, Woo in 1982, and Henderson in 1984, is given in
[WILS]. The VWS2 B-rep Parser provides a solution for a limited range of part types.

The intent of the research reported in this paper was to test the usability of the PDES/STEP
boundary representation in a computer software system and to integrate a standard part
representation with the VWS2 system. The scope of the research was kept limited to a modest
subset of what may be represented by the PDES/STEP boundary representation and the VWS2
design protocol. It is expected that the scope will be enlarged in subsequent work.

Another AMRF researcher, Mr. Mark Unger, is developing an interactive graphics-based parser.
This is a tool which a human can use to manually augment a boundary representation with a
feature-based representation.

RANGE OF PART TYPES

The range of part types handled by the VWS2 B-rep Parser (roughly those parts which can be made
with two-and-a-half-axis machining with end mills) is best described constructively. There are two
stages to the construction, which is shown in Figure 1.

Imagine a stack of metal plates of various thicknesses. There must be at least one plate, but there
is no upper bound to the number of plates. Each plate is flat on the top and bottom and vertical on
the sides. The outline of each plate is a series of straight line segments and arcs of circles. The
outline of each plate fits within the outline of the plate below it, and does not intersect it. Weld the
stack together to make a solid.

On every upward-facing surface of the solid make as many depressions as you like. The outline of
each depression is a series of straight line segments and arcs of circles. Each depression has a flat
bottom and vertical walls but may be of any depth, except that once the bottom of the part is
reached there is no more material to make a depression in. The outlines of the depressions may not
intersect. At the bottom of each depression, make as many more depressions of the same sort as
you please, with the restriction that the outlines of the depressions and the outer edge of the face
in which the depressions are made may not intersect. Continue to make depressions in the bottom
of depressions as long as you like.

Any solid which may be constructed in this manner can be parsed by the VWS2 B-rep Parser. No
solid which cannot be constructed this way can be parsed. The absence of intersections of outlines
is critical.

Although the construction method is not likely to bring any familiar object to mind, many parts
produced in machine shops for practical use fall in this class, and there is wide variation in the
appearance of parts within the class. The class represents only a small fraction of machined parts,
however.

A Parser: Boundary to Features

- 5 -

Two parts which fall in the class are shown in Figure 2. As noted on the figure, the features
representation is more concise than the boundary representation by a factor of 10 or more, in terms
of ASCII characters, when both files are nicely formatted for easy reading by humans, but without
huge amounts of white space. This is typical.

The VWS2 B-rep Parser produces a VWS2 design file with five types of features:side_contour,
contour_pocket, straight_groove, pocket, andhole. The only bottom type of the parsed features is
flat. No subfeatures are parsed.

Figure 1. Constructive Description of Part Range

top view

side view

Stage 1 - Stack plates

top view

Stage 2 - make depressions

side view

A Parser: Boundary to Features

- 6 -

Figure 2. Two Parsable Parts

A test part, “test5”. The STEP file, which could be made more concise, has 817 entities
and 60969 characters. The VWS2 format design has 6 features and 1851 characters.
Parsing required about 105 seconds.

The “pipe clamp” part. The STEP file for this part has 200 entities and 27564 characters.
The VWS2 format design has 5 features and 2015 characters. Parsing required about 80
seconds.

A Parser: Boundary to Features

- 7 -

OVERALL APPROACH

Introduction

The input file is a boundary representation in PDES/STEP format. Six stages are used:

1. Convert the STEP format file into a very similar LISP-readable boundary representation
file. Then read the new file into the LISP environment to set up a simple data structure in
active memory.

2. Reformat the simple (but hard-to-use) LISP data structure into easy-to-use hierarchical
property list format. This property list is another boundary representation, which we will
call the VWS2 B-rep.

3. Parse the VWS2 B-rep into features which are eitherside_contours or contour_pockets.
Parsing consists of identifying groups of faces of the part which may be identified with
single features. The parsing process should account for all faces of the part (with minor
exceptions described in the next section).

4. Take the list of features extracted in stage 3 and the design_id given by the user and make
a property list which is a complete design.

5. Examine the features which arecontour_pockets to see if they qualify asstraight_grooves,
holes or pockets, and change the representation of any that qualify.

6. Print the design into a file.

Stage One

The first stage is trivial. It is performed using a UNIX utility called “lex” [SUN] which replaces
single characters or strings of characters with other strings. Lex can do much more, but only its
character switching ability is used in this system. The intent of this stage is primarily to make the
STEP file LISP-readable, so that LISP can deal with it. Characters such as commas, equal signs,
@ signs, etc., are replaced by blanks, right and left parentheses, etc., so that the revised file creates
a LISP property list when it is loaded into the LISP environment.

Stage Two

The second stage is more substantive. The objective of this stage is to produce a hierarchical
property list data structure, the VWS2 B-rep, that is easy to manipulate in LISP. The hierarchical
property list data type has repeatedly proved itself to be flexible, comprehensible, readable, and
reasonably efficient.

The VWS2 B-rep has three main subdivisions: faces, edges and vertices. The parser can handle
only one shell, so no shells section is required. A check is made for multiple shells, and the parser
prints an error message and halts if there is more than one. A solid part is always contained in one
shell. Geometry and topology are intermingled in the VWS2 B-rep. Leaf nodes may be atoms or
simple lists.

A Parser: Boundary to Features

- 8 -

Vertices

Each vertex is given a name of the form vertexn. Each vertex has three properties: the x, y, and z
coordinates of a point in space. The coordinate system is the same system used in the STEP file.

Edges

Each edge is given a name of the form edgen. Edges may be either straight line segments or arcs
of circles (including full circles). A straight line segment is defined by giving the names of the two
vertices at either end. The order of the two vertices is not significant. A circular arc is given by
giving the coordinates of the center of the circle and the components of a unit vector perpendicular
to the plane of the circle. If the arc is a full circle, a radius is also given. If not, the names of the
vertices at the ends of the arc are given. All arcs are assumed to go in a counterclockwise direction
(right hand rule) from the first point to the second when viewed from the tip of the unit vector
(assuming it is placed with its base at the center of the circle). The radius of an open arc is not
given, to avoid duplicate information. The radius may be computed as the distance from the center
of the circle to either end. To simplify computations at later stages, the size of the included angle
of each open arc is calculated (in radians) and stored as the value of the property “turn”. Each edge
must belong to two faces. A list of the two faces is stored as the value of the property “faces”. The
order of the list is not significant.

Faces

Each face is given a name of the form facen. Faces have two properties: surface and edge_loops.
The surface always has the property “type”, whose value is either “plane” or “cylinder”.

For a plane, other properties besides type include xco, yco, zco and const which correspond to (a,
b, c, and d) in the equation of a plane ax+by+cz=d. xco is an abbreviation of “x-coefficient”.

A cylinder is specified by giving the coordinates of a point on the axis of the cylinder, plus the three
elements of a unit vector to specify the orientation of the axis, plus the radius. The names of the
properties are cx, cy, and cz (for the point), vx, vy, and vz (for the unit vector), and radius. If the
unit vector is parallel to the x, y, or z-axis, it must point in the positive direction of that axis.

Edge_loops are numbered sequentially starting with 1. If a face is entirely within a loop, that loop
is loop 1. A planar face is always within loop 1, of course. Each edge_loop has two properties:
“loop”, the value of which is an ordered list of edges that make up the loop, and “corners”, the value
of which is a corners structure in VWS2 format representing the same information. The loop list
may go in either direction around the loop. The direction is not significant (which differs from
most boundary representations).

If a horizontal face which is not the top face of the part has more than two edge_loops, the second
will be the bottom of an upwards extension, and the third onward will be the top of depressions. A
vertical cylindrical face which is closed around its circumference will have the first loop as the
upper bounding loop and the second loop as the lower bounding loop. In this case, both loops are
full circles.

A Parser: Boundary to Features

- 9 -

Because the edge loops in a STEP file are not assumed to be in any particular order, a fair amount
of calculation is necessary to put them in order. The STEP file does have a field for identifying the
outermost loop, but its use is optional. The VWS2 B-rep Parser assumes this information will not
be available and always orders the loops itself.

Stage Three

Stage three is the parsing process itself, in whichside_contour andcontour_pocket features are
identified. It is described in the next section of this paper.

Stage Four

The height of the starting block for the VWS2 format design is found by adding together the depths
of all theside_contours. Its length is the maximum x value attained on the outline of feature 1,
which is the lowest (hence largest)side_contour. Its width is the maximum y value on the same
outline. The system expects (and checks) that the location of the part in the coordinate system used
by the STEP file is such that the part does not extend into the negative-x side of the yz-plane or the
negative-y side of the xz-plane. It does not matter, however, if the part extends into the negative-z
side of the xy-plane.

A header for the design is created from the design_id and the block_size. The design itself is
assembled as a hierarchical property list with two top-level properties: header and features.

Stage Five

Thecontour_pockets are examined, and those which may be expressed asstraight_grooves, holes,
or pockets are identified. Since these feature types are simpler thancontour_pockets, the
contour_pockets are replaced, if possible.

A contour_pocket which is ahole is easily recognized: it is necessary and sufficient that the centers
of the arcs in each corner of thecontour_pocket be at the same point.

A contour_pocket which is astraight_groove is recognized by checking that it has four corners,
that the radii in the four corners are the same, and that the centers of the arcs in two pairs of adjacent
corners are at the same point.

A contour_pocket which is a pocket is recognized by checking that it has four corners which lie at
the corners of a rectangle whose sides are parallel to the x and y axes, and that the radii in the four
corners are the same.

All the checks of equality, parallelism, etc. mentioned above allow a small margin of error.

Stage Six

The design is printed in an easy-to-read format to a file in the “design” subdirectory of the directory
in which LISP is running.

A Parser: Boundary to Features

- 10 -

APPROACH TO PARSING USED IN STAGE 3

Introduction

In stage three of the overall approach, the VWS2 B-rep is parsed into features. The parsing is based
on faces. Groups of faces are identified which form the boundaries of features. We will call such
a group of faces the “signature” of a feature. Only two kinds of features are identified at this stage:
side_contours andcontour_pockets. The side contours are identified first, sequentially from the
bottom up. This is equivalent to identifying the stack of plates described earlier.

Then thecontour_pockets are identified by looking into all the edge loops on the upper faces of all
theside_contours. Each such edge loop may be the top edge of a tree of nestedcontour_pockets
extending downward into the part, or it may be the top edge of singlecontour_pocket.

Principal Data Structures

The parsing process is facilitated by the use of five lists:
1. the unaltered VWS2 B-rep,
2. a list of horizontal faces called “horizontal_faces”,
3. a list of vertical faces called “vertical_faces”,
4. a list of the top faces ofside_contours, called “sc_tops”, and
5. a list of features, called “features”.

Horizontal faces are identified as those planar faces which have vertical unit vectors.
Horizontal_faces is ordered according to height above the xy-plane, with the first face being the
lowest.

Vertical_faces is all faces on surfaces which are either planes whose z-coefficient is zero or
cylinders whose axis is vertical. It is not ordered.

If any faces remain after horizontal_faces and vertical_faces have been extracted, the user is asked
whether the parser should continue or quit. Any leftover faces will be ignored and not parsed.
Allowing leftover faces permits the parsing of some parts which have holes in their sides, although
no features representing those holes will be created in the parsed design.

Horizontal_faces and vertical_faces are constructed at the beginning of the parsing process. As the
parsing process proceeds and faces are identified with features, the faces are removed from
horizontal_faces and vertical_faces, while features are added to the features list. Sc_tops starts out
as an empty list and is built up asside_contours are parsed. Then faces are removed from sc_tops
as thecontour_pockets are parsed, so that it is empty again when parsing is over.

Parsing Side_Contours

The essence of parsing theside_contours is to identify the plates which make up the stack
described earlier. Each plate corresponds to aside_contour feature.

The first horizontal face is the bottom of the part and the bottom of the lowest plate. Call the outer

A Parser: Boundary to Features

- 11 -

edge loop at the bottom of this plate the “bottom loop”.

As shown in Figure 3, the upper surface of the plate is identified by picking any edge from the
bottom loop, finding the other face attached to that edge, finding the upper edge of that face, and
then finding the other face that edge is attached to. Then it is verified that all the vertical faces
attached to the bottom loop are vertical and share an edge with the first edge loop of the upper face
of the plate.

The faces around the sides of the plate are deleted from vertical_faces, the top face of the plate is
put on the sc_tops list, and the bottom face is deleted from horizontal_faces.

A side contour feature is put on the list of features. The depth of the side contour is the distance
between the top and bottom faces, and the “corners” data structure for theside_contour is extracted
from the outer edge loop of the upper surface of the plate. If the corners structure is
counterclockwise, an equivalent clockwise structure is constructed and used instead. Other actions
are taken to keep track of feature numbers and reference features.

The system then finds the outer edge loop of the next plate up in the stack. The outer loop is the
second edge loop of the upper surface of the lower plate. The actions of the preceding three
paragraphs are repeated to identify the next plate up and add a feature to the list.
This process is continued until it turns out that the top of the most recently found plate is the
uppermost horizontal face of the part, at which point a few concluding actions are taken. The
parsing ofside_contours is completed.

Figure 3. Finding Upper Surface of Side_Contour

1. Start at lower face
2. Pick an edge of bottom loop
3. Find vertical face on edge
4. Find upper edge of vertical face
5. Find upper face

1

2

3

4

5

A Parser: Boundary to Features

- 12 -

Parsing Contour_Pockets

The parser applies a function named “parse_depressions” to each face in sc_tops.
Parse_depressions simply applies “parse_dep” to each edge loop on the face other than the outer
loop and the bottom loop of the next plate up (if there is one).

The parsing of acontour_pocket by parse_dep proceeds much like the parsing of aside_contour.
The outer edge_loop of the bottom of thecontour_pocket is found by tracing down a vertical face
of thecontour_pocket from the top edge loop, which is known, to the bottom. Then all the faces
attached to the top loop (except for the current sc_top) are checked for verticality and for being
attached to the bottom loop. Those faces between the two loops are removed from vertical_faces.
Then parse_depressions is applied to any edge loops found on the interior of the bottom face of the
contour_pocket, and the bottom face is removed from horizontal_faces.

A contour_pocket feature is put on the list of features by parse_dep. The depth of the
contour_pocket is the distance between the top and bottom faces, and the “corners” data structure
for the contour_pocket is extracted from the top edge loop and switched from clockwise to
counterclockwise, if necessary. Other actions are taken to keep track of feature numbers and
reference features.

By recursively applying parse_depressions to the bottom face of eachcontour_pocket, a
downward-extending tree of nestedcontour_pockets is fully parsed. The end of a branch of the
tree is recognized as acontour_pocket, the bottom of which has only one edge loop.

The parsing ofcontour_pockets is complete when each potential tree ofcontour_pockets extending
downward from every interior edge loop of each sc_top has been parsed.

Exception Handling

The VWS2 B-rep Parser can parse parts which have the type of shape described above. It tries to
extract such a part from the boundary representation it is given. It does not assume that the part is
of that type, however. Rather, once it has preliminary evidence of a feature, it checks that all faces
of the feature are as they should be before concluding that the feature exists.

At the end of the parsing process, horizontal_faces, vertical_faces and sc_tops must be empty, or
an error message is printed and the system halts.

In general, if the part turns out to be unparsable at any stage, an error message is printed and a LISP
program break occurs, so that the current state of the parsing process may be examined. Moreover
the LISP function in which the break occurs generally returns a cue to the function which called it,
and that function also prints a message and breaks for further examination of the parsing process.

A Parser: Boundary to Features

- 13 -

EXTENSIBILITY

Version 2

The VWS2 B-rep Parser, version 1, was built in about a month. Only a limited range of feature
types was intended to be recognized by version 1, and a rather small range of surfaces (planes and
cylinders) and curves (circular arcs and straight line segments) is recognizable. The technique of
looking for arrangements of faces which are the signatures of features may be extended quite a bit.
In version 2 it should be feasible to add conical, spherical, and toroidal surfaces, and to add arcs
which are elliptical, parabolic, and hyperbolic, at least.

Additional arrangements of faces could be added to what the parser will recognize, so that it will
handle: chamfers and countersinks on the upper edges of features, fillets between horizontal and
vertical faces, round-bottomed and vee-bottomed features.

Feature simplification (stage 5) could be extended to includecontour_grooves. The level of
difficulty of extractingcontour_grooves varies from easy to hard, depending upon the particular
contour_pocket. In principle, anycontour_pocket may be expressed as acontour_groove.

Future Version

As just described, Version 2 requires no change to the VWS2 design protocol. By making changes
to the protocol and corresponding improvements to the parser, the range of parts could be expanded
further. The most desirable changes are:

1. allow islands incontour_pockets and multiple raised areas onside_contours.
2. allow features to be made from two, six, or many sides of the part.
3. add new feature types.
4. add more subfeatures and options, such as chamfering a contour feature, filleting the

bottom of a pocket, making the chamfer angle a variable, or rotating a pocket.

The range of parts that would be handled by the VWS2 B-rep Parser with these changes would
include a significant proportion of the parts a typical machining job shop makes. For some classes
of parts, such as electronics chassis, the proportion should exceed fifty percent.

A Parser: Boundary to Features

- 14 -

OBSERVATIONS

Timing

Running uncompiled on a Sun 3/160 microcomputer with a numerical coprocessor and 8
megabytes of internal memory, the VWS2 B-rep Parser parsed a STEP file with 200 entities in 80
seconds, and a 23-page STEP file with 817 entities in 105 seconds.
Since the approach used by the parser is a constructive one, and does not involve searching in large
spaces, the amount of time taken to parse a part should grow roughly linearly with the number of
entities in the input file.

Other Types of Part Model Parsing

The advantage of parsing a boundary representation into a VWS2 format design is that a system
already exists which can make parts automatically from such a design. The VWS2 design protocol,
however, is not standard. PDES has been working for some time on a standard feature-based
design protocol, but the physical file format for this protocol has not yet been defined. When the
file format has been defined, it should be feasible to use the approach of the VWS2 B-rep Parser
to construct a system which will parse a PDES boundary representation into a PDES features
representation. The simplest method of constructing such a system will probably be to use the
VWS2 B-rep Parser to convert the PDES boundary representation into a VWS2 feature-based
representation, and then convert VWS2 features into PDES features. In the long run, a separate
parser to convert between the two PDES representations seems more sensible.

It should be feasible to construct a parser that goes in the opposite direction of the VWS2 B-rep
Parser and converts a VWS2 design into a PDES/STEP boundary representation. Indeed, all
commercial CSG modeling systems which can make pictures of the faces of parts must have this
type of capability: the ability to find the boundaries of a part when its solid form is known.

Integration

The VWS2 B-rep Parser ties the VWS2 system to existing boundary representations, so that parts
may be machined automatically from designs in any of three formats. Figure 4 shows the extent
to which integration has been achieved. As shown in Figure 4, the following sequence of activity
is feasible:

1. The Computervision Company has lent several of its CADDS stations to NIST for use in
research. A part is designed on a CADDS station using solid modeling. The design must
be done so that no spurious faces or vertices are in the file representing the part.

2. A boundary representation of the part in AMRF standard format is extracted from the
CADDS representation of the part by the facility build by James Fowler [FOWL]. This
facility has been integrated with the CADDS software and runs on the CADDS station.
The conversion is done by issuing a single command from CADDS.

A Parser: Boundary to Features

- 15 -

3. The AMRF boundary representation file is transferred to a SUN3 and converted into a
STEP boundary representation file by the facility built by Tina Lee and Sanford Ressler
[LE&R]. The conversion is done by issuing a single “stepparse” command from UNIX.

4. The STEP boundary representation file is converted into a VWS2 features design file by
the VWS2 B-rep Parser. The VWS2 Part Design Editor [K&J2] may be used to create a
VWS2 features file directly.

5. A process plan for the VWS2 machining center is generated from the VWS2 features
design file and a tool catalog by the VWS2 Process Planning Module [KRAM].

6. An NC-program for the VWS2 machining center is generated from the VWS2 features
design file, the process plan, and a current tooling database by the VWS2 Data Execution
Module [KR&W].

7. A workstation level process plan for the Vertical Workstation is used to load a part blank,
download the NC-program to the controller for the machining center, cut the part, and
unload the part.

Obviously, the process may be started at any of the items 1 through 5. For example, data for the
pipe clamp part shown in Figure 2 was entered in AMRF format directly, using a text editor, so the
process for the pipe clamp started with item 4. The other part shown in Figure 2 was designed on
the Computervision CADDS station.

In practice, a few LISP commands have been added to the Vertical Workstation control system, so
that items 4 through 7 will be carried out by issuing a single command to the control system. Thus,
parts are being made directly from the STEP file without further human intervention.

The PDES/STEP Boundary Representation Format

The PDES/STEP boundary representation format was fully adequate for the research reported here,
and it appears to be adequate for the continuation of this research. The format has many admirable
qualities. It is complete and unambiguous, and individual lines are easily read.

For the purposes of parsing, the format has some drawbacks. First, an understanding of the shape
of a part or even a small portion of shape cannot be obtained by a human reading the file. No mental
image of shape is obtained by reading the file. Second, to extract data, it is typically necessary to
follow a series of up to six pointers from one part of the file to another, across a host of data types,
including shells, faces, edges, vertices, surfaces, curves, points, edge loops, and more. The first
drawback makes life difficult for the programmer trying to build a parser. The second drawback
necessitates more work for both the programmer and the computer. But these are minor problems
which are dealt with by extracting the VWS2 B-rep before trying to parse.

It might be desirable to add some restrictions to the PDES/STEP format in order to provide for
making the data be minimal. Two potentially useful restrictions were brought to light during the
course of building the parser:

A Parser: Boundary to Features

- 16 -

Figure 4. Integration

LEGEND

NC-Program

Process
Plan

VWS2 Feature-
Based Design

PDES/STEP Boundary File

AMRF Boundary File

 CADDS Part Representation

= A file and/or internal data structure

= A a software system running on a computer

AMRF from CADDS
extractor

Computervision CADDS
System

AMRF to STEP
Converter

VWS2 B-rep Parser

VWS2 Process Planner

Tool Catalog

VWS2 Data Execution
Module

Current Tooling
Data

Make Part in Vertical
Workstation, Using Control

System

A Parser: Boundary to Features

- 17 -

First, do not allow multiple copies of the same entity. Multiple copies simply waste space. For
example, all horizontal faces of a part have the same unit vector for orientation, namely (0, 0, 1),
but coming out of a commercial CAD system, each horizontal face is likely to have its own copy
of this vector.

Second, do not allow unnecessary subdivision of lines and surfaces. Designs coming out of
commercial CAD systems may have an unnecessary vertex located in the middle of a continuous
line, and the line represented as two parts. This brings the VWS2 parser to a halt. Full cylindrical
faces may be divided into two halves by two unnecessary lines between opposite ends of the
cylinder. The VWS2 parser can deal with it, but the STEP files contains an extra seven points, four
vertices, four curves, four edges, one surface, one face, and three unit vectors, and parsing takes
more time. Other unnecessary subdivisions may come out of other systems.

LIMITATIONS

Current Version

Most of the limitations of the VWS2 B-rep Parser have already been noted. In addition, the input
STEP file is limited to 1023 numbered lines, since the line numbers are used as properties in the
second stage of the system, and the LISP dialect being used, Franz LISP from Franz, Inc., will not
use higher numbers as properties. This limitation could easily be removed. It is not necessary to
use numbers as properties.

Long Run

In pushing the technique of the VWS2 B-rep Parser to its limits, the most difficult obstacle is
expected to be dealing with features which intersect in a complex manner. The basis of the
technique is to look for arrangements of faces which are the signatures of features. The set of
recognizable signatures must include everything that can occur in the part range the parser is
intended to handle. When features are allowed to intersect, the set of signatures will probably grow
in proportion to the number of feature types raised to the power of the number of allowable
simultaneous intersections of features. This is likely to get out of hand very quickly.

A Parser: Boundary to Features

- 18 -

REFERENCES

[FOWL] Fowler, James; personal communication regarding the part model extraction system he
built, which converts a Computervision model to an AMRF model; not yet documented; 1988.

[HEND] Henderson, Mark R.;Extraction of Feature Information from Three Dimensional CAD
Data; Ph.D. Thesis at Purdue University; May 1984; 139 pages.

[HOPP] Hopp, Theodore H.;AMRF Database Report Format: Part Model; NBSIR 87-3672;
National Bureau of Standards; 1987; 71 pages.

[ISO1] International Organization for Standardization, TC184/SC4/WG1;The STEP File
Structure; Version 11.0; February 1988.

[ISO2] International Organization for Standardization, TC184/SC4/WG1;Shape Topical
Information Model; Version Denver; April 1988.

[K&J1] Kramer, Thomas R., and Jun, Jau-Shi;Software for an Automated Machining Workstation;
Proceedings of the 1986 International Machine Tool Technical Conference; Chicago, Illinois;
September 1986; pp. 12-9 through 12-44.

[K&J2] Kramer, Thomas R., and Jun, Jau-Shi;The Design Protocol, Part Design Editor, and
Geometry Library of the Vertical Workstation; NBSIR 88-3717; National Bureau of Standards;
1988; 101 pages.

[KR&W] Kramer, Thomas R.; and Weaver, Rebecca E.;The Data Execution Module of the
Vertical Workstation of the Automated Manufacturing Research Facility at the National Bureau of
Standards; NBSIR 88-3704; National Bureau of Standards; 1988; 58 pages.

[KRAM] Kramer, Thomas R.;Process Plan Expression, Generation, and Enhancement for the
Vertical Workstation Milling Machine in the Automated Manufacturing Research Facility at the
National Bureau of Standards; NBSIR 87-3678; National Bureau of Standards; 1987; 56 pages.

[LE&R] Lee, Y. Tina, and Ressler, Sanford P.;Converting the AMRF Part Model Report to a
PDES/STEP Subset; NBSIR 88-3818; National Bureau of Standards; 1988; 39 pages.

[NANZ] Nanzetta, Philip;Update: NBS Research Facility Addresses Problems in Setups for Small
Batch Manufacturing; Industrial Engineering; June 1984; pp. 68 - 73.

[REQU] Requicha, A. A. G.;Representations of Solid Objects; Lecture Notes in Computer
Science; Goos, G. and Hartmanis, J.; New York; Springer-Verlag; 1980; pp. 2 - 78.

[SUN] Programming Utilities for the Sun Workstation; Sun Microsystems; Part No: 800-1301-03;
Revision F of 17 February 1986; 238 pages.

[WILS] Wilson, Peter R.;Feature Recognition; SIGGRAPH Course Notes; Advanced Topics in
Solid Modeling; Twelfth Annual Conference and Exhibition on Computer Graphics and
Interactive Techniques; San Francisco, California; July 1985; 42 pages.

